Struct serde::bytes::Bytes
[−]
[src]
pub struct Bytes<'a> { /* fields omitted */ }
Wraps a &[u8]
in order to serialize in an efficient way. Does not support
deserialization.
use serde::bytes::Bytes; #[derive(Serialize)] struct Packet<'a> { destination: IpAddr, payload: Bytes<'a>, }
Methods
impl<'a> Bytes<'a>
[src]
Methods from Deref<Target = [u8]>
fn len(&self) -> usize
1.0.0
fn is_empty(&self) -> bool
1.0.0
fn first(&self) -> Option<&T>
1.0.0
Returns the first element of the slice, or None
if it is empty.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&10), v.first()); let w: &[i32] = &[]; assert_eq!(None, w.first());
fn split_first(&self) -> Option<(&T, &[T])>
1.5.0
Returns the first and all the rest of the elements of the slice, or None
if it is empty.
Examples
let x = &[0, 1, 2]; if let Some((first, elements)) = x.split_first() { assert_eq!(first, &0); assert_eq!(elements, &[1, 2]); }
fn split_last(&self) -> Option<(&T, &[T])>
1.5.0
Returns the last and all the rest of the elements of the slice, or None
if it is empty.
Examples
let x = &[0, 1, 2]; if let Some((last, elements)) = x.split_last() { assert_eq!(last, &2); assert_eq!(elements, &[0, 1]); }
fn last(&self) -> Option<&T>
1.0.0
Returns the last element of the slice, or None
if it is empty.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&30), v.last()); let w: &[i32] = &[]; assert_eq!(None, w.last());
fn get<I>(&self, index: I) -> Option<&<I as SliceIndex<[T]>>::Output> where
I: SliceIndex<[T]>,
1.0.0
I: SliceIndex<[T]>,
Returns a reference to an element or subslice depending on the type of index.
- If given a position, returns a reference to the element at that
position or
None
if out of bounds. - If given a range, returns the subslice corresponding to that range,
or
None
if out of bounds.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&40), v.get(1)); assert_eq!(Some(&[10, 40][..]), v.get(0..2)); assert_eq!(None, v.get(3)); assert_eq!(None, v.get(0..4));
unsafe fn get_unchecked<I>(&self, index: I) -> &<I as SliceIndex<[T]>>::Output where
I: SliceIndex<[T]>,
1.0.0
I: SliceIndex<[T]>,
Returns a reference to an element or subslice, without doing bounds checking. So use it very carefully!
Examples
let x = &[1, 2, 4]; unsafe { assert_eq!(x.get_unchecked(1), &2); }
fn as_ptr(&self) -> *const T
1.0.0
Returns a raw pointer to the slice's buffer.
The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.
Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.
Examples
let x = &[1, 2, 4]; let x_ptr = x.as_ptr(); unsafe { for i in 0..x.len() { assert_eq!(x.get_unchecked(i), &*x_ptr.offset(i as isize)); } }
fn iter(&self) -> Iter<T>
1.0.0
Returns an iterator over the slice.
Examples
let x = &[1, 2, 4]; let mut iterator = x.iter(); assert_eq!(iterator.next(), Some(&1)); assert_eq!(iterator.next(), Some(&2)); assert_eq!(iterator.next(), Some(&4)); assert_eq!(iterator.next(), None);
fn windows(&self, size: usize) -> Windows<T>
1.0.0
Returns an iterator over all contiguous windows of length
size
. The windows overlap. If the slice is shorter than
size
, the iterator returns no values.
Panics
Panics if size
is 0.
Example
let slice = ['r', 'u', 's', 't']; let mut iter = slice.windows(2); assert_eq!(iter.next().unwrap(), &['r', 'u']); assert_eq!(iter.next().unwrap(), &['u', 's']); assert_eq!(iter.next().unwrap(), &['s', 't']); assert!(iter.next().is_none());
If the slice is shorter than size
:
let slice = ['f', 'o', 'o']; let mut iter = slice.windows(4); assert!(iter.next().is_none());
fn chunks(&self, size: usize) -> Chunks<T>
1.0.0
Returns an iterator over size
elements of the slice at a
time. The chunks are slices and do not overlap. If size
does
not divide the length of the slice, then the last chunk will
not have length size
.
Panics
Panics if size
is 0.
Example
let slice = ['l', 'o', 'r', 'e', 'm']; let mut iter = slice.chunks(2); assert_eq!(iter.next().unwrap(), &['l', 'o']); assert_eq!(iter.next().unwrap(), &['r', 'e']); assert_eq!(iter.next().unwrap(), &['m']); assert!(iter.next().is_none());
fn split_at(&self, mid: usize) -> (&[T], &[T])
1.0.0
Divides one slice into two at an index.
The first will contain all indices from [0, mid)
(excluding
the index mid
itself) and the second will contain all
indices from [mid, len)
(excluding the index len
itself).
Panics
Panics if mid > len
.
Examples
let v = [10, 40, 30, 20, 50]; let (v1, v2) = v.split_at(2); assert_eq!([10, 40], v1); assert_eq!([30, 20, 50], v2);
fn split<F>(&self, pred: F) -> Split<T, F> where
F: FnMut(&T) -> bool,
1.0.0
F: FnMut(&T) -> bool,
Returns an iterator over subslices separated by elements that match
pred
. The matched element is not contained in the subslices.
Examples
let slice = [10, 40, 33, 20]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10, 40]); assert_eq!(iter.next().unwrap(), &[20]); assert!(iter.next().is_none());
If the first element is matched, an empty slice will be the first item returned by the iterator. Similarly, if the last element in the slice is matched, an empty slice will be the last item returned by the iterator:
let slice = [10, 40, 33]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10, 40]); assert_eq!(iter.next().unwrap(), &[]); assert!(iter.next().is_none());
If two matched elements are directly adjacent, an empty slice will be present between them:
let slice = [10, 6, 33, 20]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10]); assert_eq!(iter.next().unwrap(), &[]); assert_eq!(iter.next().unwrap(), &[20]); assert!(iter.next().is_none());
fn rsplit<F>(&self, pred: F) -> RSplit<T, F> where
F: FnMut(&T) -> bool,
F: FnMut(&T) -> bool,
slice_rsplit
)Returns an iterator over subslices separated by elements that match
pred
, starting at the end of the slice and working backwards.
The matched element is not contained in the subslices.
Examples
#![feature(slice_rsplit)] let slice = [11, 22, 33, 0, 44, 55]; let mut iter = slice.rsplit(|num| *num == 0); assert_eq!(iter.next().unwrap(), &[44, 55]); assert_eq!(iter.next().unwrap(), &[11, 22, 33]); assert_eq!(iter.next(), None);
As with split()
, if the first or last element is matched, an empty
slice will be the first (or last) item returned by the iterator.
#![feature(slice_rsplit)] let v = &[0, 1, 1, 2, 3, 5, 8]; let mut it = v.rsplit(|n| *n % 2 == 0); assert_eq!(it.next().unwrap(), &[]); assert_eq!(it.next().unwrap(), &[3, 5]); assert_eq!(it.next().unwrap(), &[1, 1]); assert_eq!(it.next().unwrap(), &[]); assert_eq!(it.next(), None);
fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F> where
F: FnMut(&T) -> bool,
1.0.0
F: FnMut(&T) -> bool,
Returns an iterator over subslices separated by elements that match
pred
, limited to returning at most n
items. The matched element is
not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
Print the slice split once by numbers divisible by 3 (i.e. [10, 40]
,
[20, 60, 50]
):
let v = [10, 40, 30, 20, 60, 50]; for group in v.splitn(2, |num| *num % 3 == 0) { println!("{:?}", group); }
fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F> where
F: FnMut(&T) -> bool,
1.0.0
F: FnMut(&T) -> bool,
Returns an iterator over subslices separated by elements that match
pred
limited to returning at most n
items. This starts at the end of
the slice and works backwards. The matched element is not contained in
the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
Print the slice split once, starting from the end, by numbers divisible
by 3 (i.e. [50]
, [10, 40, 30, 20]
):
let v = [10, 40, 30, 20, 60, 50]; for group in v.rsplitn(2, |num| *num % 3 == 0) { println!("{:?}", group); }
fn contains(&self, x: &T) -> bool where
T: PartialEq<T>,
1.0.0
T: PartialEq<T>,
Returns true
if the slice contains an element with the given value.
Examples
let v = [10, 40, 30]; assert!(v.contains(&30)); assert!(!v.contains(&50));
fn starts_with(&self, needle: &[T]) -> bool where
T: PartialEq<T>,
1.0.0
T: PartialEq<T>,
Returns true
if needle
is a prefix of the slice.
Examples
let v = [10, 40, 30]; assert!(v.starts_with(&[10])); assert!(v.starts_with(&[10, 40])); assert!(!v.starts_with(&[50])); assert!(!v.starts_with(&[10, 50]));
Always returns true
if needle
is an empty slice:
let v = &[10, 40, 30]; assert!(v.starts_with(&[])); let v: &[u8] = &[]; assert!(v.starts_with(&[]));
fn ends_with(&self, needle: &[T]) -> bool where
T: PartialEq<T>,
1.0.0
T: PartialEq<T>,
Returns true
if needle
is a suffix of the slice.
Examples
let v = [10, 40, 30]; assert!(v.ends_with(&[30])); assert!(v.ends_with(&[40, 30])); assert!(!v.ends_with(&[50])); assert!(!v.ends_with(&[50, 30]));
Always returns true
if needle
is an empty slice:
let v = &[10, 40, 30]; assert!(v.ends_with(&[])); let v: &[u8] = &[]; assert!(v.ends_with(&[]));
fn binary_search(&self, x: &T) -> Result<usize, usize> where
T: Ord,
1.0.0
T: Ord,
Binary searches this sorted slice for a given element.
If the value is found then Ok
is returned, containing the
index of the matching element; if the value is not found then
Err
is returned, containing the index where a matching
element could be inserted while maintaining sorted order.
Example
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1, 4]
.
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; assert_eq!(s.binary_search(&13), Ok(9)); assert_eq!(s.binary_search(&4), Err(7)); assert_eq!(s.binary_search(&100), Err(13)); let r = s.binary_search(&1); assert!(match r { Ok(1...4) => true, _ => false, });
fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize> where
F: FnMut(&'a T) -> Ordering,
1.0.0
F: FnMut(&'a T) -> Ordering,
Binary searches this sorted slice with a comparator function.
The comparator function should implement an order consistent
with the sort order of the underlying slice, returning an
order code that indicates whether its argument is Less
,
Equal
or Greater
the desired target.
If a matching value is found then returns Ok
, containing
the index for the matched element; if no match is found then
Err
is returned, containing the index where a matching
element could be inserted while maintaining sorted order.
Example
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1, 4]
.
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; let seek = 13; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9)); let seek = 4; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7)); let seek = 100; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13)); let seek = 1; let r = s.binary_search_by(|probe| probe.cmp(&seek)); assert!(match r { Ok(1...4) => true, _ => false, });
fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize> where
B: Ord,
F: FnMut(&'a T) -> B,
1.10.0
B: Ord,
F: FnMut(&'a T) -> B,
Binary searches this sorted slice with a key extraction function.
Assumes that the slice is sorted by the key, for instance with
sort_by_key
using the same key extraction function.
If a matching value is found then returns Ok
, containing the
index for the matched element; if no match is found then Err
is returned, containing the index where a matching element could
be inserted while maintaining sorted order.
Examples
Looks up a series of four elements in a slice of pairs sorted by
their second elements. The first is found, with a uniquely
determined position; the second and third are not found; the
fourth could match any position in [1, 4]
.
let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1), (1, 2), (2, 3), (4, 5), (5, 8), (3, 13), (1, 21), (2, 34), (4, 55)]; assert_eq!(s.binary_search_by_key(&13, |&(a,b)| b), Ok(9)); assert_eq!(s.binary_search_by_key(&4, |&(a,b)| b), Err(7)); assert_eq!(s.binary_search_by_key(&100, |&(a,b)| b), Err(13)); let r = s.binary_search_by_key(&1, |&(a,b)| b); assert!(match r { Ok(1...4) => true, _ => false, });
fn to_vec(&self) -> Vec<T> where
T: Clone,
1.0.0
T: Clone,
Copies self
into a new Vec
.
Examples
let s = [10, 40, 30]; let x = s.to_vec(); // Here, `s` and `x` can be modified independently.
fn into_vec(self: Box<[T]>) -> Vec<T>
1.0.0
Converts self
into a vector without clones or allocation.
Examples
let s: Box<[i32]> = Box::new([10, 40, 30]); let x = s.into_vec(); // `s` cannot be used anymore because it has been converted into `x`. assert_eq!(x, vec![10, 40, 30]);
Trait Implementations
impl<'a> Clone for Bytes<'a>
[src]
fn clone(&self) -> Bytes<'a>
Returns a copy of the value. Read more
fn clone_from(&mut self, source: &Self)
1.0.0
Performs copy-assignment from source
. Read more
impl<'a> Copy for Bytes<'a>
[src]
impl<'a> Eq for Bytes<'a>
[src]
impl<'a> Hash for Bytes<'a>
[src]
fn hash<__H: Hasher>(&self, __arg_0: &mut __H)
Feeds this value into the given [Hasher
]. Read more
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher,
1.3.0
H: Hasher,
Feeds a slice of this type into the given [Hasher
]. Read more
impl<'a> PartialEq for Bytes<'a>
[src]
fn eq(&self, __arg_0: &Bytes<'a>) -> bool
This method tests for self
and other
values to be equal, and is used by ==
. Read more
fn ne(&self, __arg_0: &Bytes<'a>) -> bool
This method tests for !=
.
impl<'a> PartialOrd for Bytes<'a>
[src]
fn partial_cmp(&self, __arg_0: &Bytes<'a>) -> Option<Ordering>
This method returns an ordering between self
and other
values if one exists. Read more
fn lt(&self, __arg_0: &Bytes<'a>) -> bool
This method tests less than (for self
and other
) and is used by the <
operator. Read more
fn le(&self, __arg_0: &Bytes<'a>) -> bool
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
fn gt(&self, __arg_0: &Bytes<'a>) -> bool
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
fn ge(&self, __arg_0: &Bytes<'a>) -> bool
This method tests greater than or equal to (for self
and other
) and is used by the >=
operator. Read more
impl<'a> Ord for Bytes<'a>
[src]
fn cmp(&self, __arg_0: &Bytes<'a>) -> Ordering
This method returns an Ordering
between self
and other
. Read more
impl<'a> Debug for Bytes<'a>
[src]
impl<'a> From<&'a [u8]> for Bytes<'a>
[src]
impl<'a> From<&'a Vec<u8>> for Bytes<'a>
[src]
impl<'a> Into<&'a [u8]> for Bytes<'a>
[src]
impl<'a> Deref for Bytes<'a>
[src]
type Target = [u8]
The resulting type after dereferencing
fn deref(&self) -> &[u8]
The method called to dereference a value
impl<'a> Serialize for Bytes<'a>
[src]
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where
S: Serializer,
S: Serializer,
Serialize this value into the given Serde serializer. Read more
impl<'a, E> ValueDeserializer<E> for Bytes<'a> where
E: Error,
[src]
E: Error,
type Deserializer = BytesDeserializer<'a, E>
The actual deserializer type.
fn into_deserializer(self) -> BytesDeserializer<'a, E>
Convert this value into a deserializer.