1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
//! Generic data structure deserialization framework.
//!
//! The two most important traits in this module are `Deserialize` and
//! `Deserializer`.
//!
//!  - **A type that implements `Deserialize` is a data structure** that can be
//!    deserialized from any data format supported by Serde, and conversely
//!  - **A type that implements `Deserializer` is a data format** that can
//!    deserialize any data structure supported by Serde.
//!
//! # The Deserialize trait
//!
//! Serde provides `Deserialize` implementations for many Rust primitive and
//! standard library types. The complete list is below. All of these can be
//! deserialized using Serde out of the box.
//!
//! Additionally, Serde provides a procedural macro called `serde_derive` to
//! automatically generate `Deserialize` implementations for structs and enums
//! in your program. See the [codegen section of the manual][codegen] for how to
//! use this.
//!
//! In rare cases it may be necessary to implement `Deserialize` manually for
//! some type in your program. See the [Implementing
//! `Deserialize`][impl-deserialize] section of the manual for more about this.
//!
//! Third-party crates may provide `Deserialize` implementations for types that
//! they expose. For example the `linked-hash-map` crate provides a
//! `LinkedHashMap<K, V>` type that is deserializable by Serde because the crate
//! provides an implementation of `Deserialize` for it.
//!
//! # The Deserializer trait
//!
//! `Deserializer` implementations are provided by third-party crates, for
//! example [`serde_json`][serde_json], [`serde_yaml`][serde_yaml] and
//! [`bincode`][bincode].
//!
//! A partial list of well-maintained formats is given on the [Serde
//! website][data-formats].
//!
//! # Implementations of Deserialize provided by Serde
//!
//! This is a slightly different set of types than what is supported for
//! serialization. Some types can be serialized by Serde but not deserialized.
//! One example is `&str`.
//!
//!  - **Primitive types**:
//!    - bool
//!    - isize, i8, i16, i32, i64
//!    - usize, u8, u16, u32, u64
//!    - f32, f64
//!    - char
//!  - **Compound types**:
//!    - [T; 0] through [T; 32]
//!    - tuples up to size 16
//!  - **Common standard library types**:
//!    - String
//!    - Option\<T\>
//!    - Result\<T, E\>
//!    - PhantomData\<T\>
//!  - **Wrapper types**:
//!    - Box\<T\>
//!    - Box\<[T]\>
//!    - Box\<str\>
//!    - Rc\<T\>
//!    - Arc\<T\>
//!    - Cow\<'a, T\>
//!    - Cell\<T\>
//!    - RefCell\<T\>
//!    - Mutex\<T\>
//!    - RwLock\<T\>
//!  - **Collection types**:
//!    - BTreeMap\<K, V\>
//!    - BTreeSet\<T\>
//!    - BinaryHeap\<T\>
//!    - HashMap\<K, V, H\>
//!    - HashSet\<T, H\>
//!    - LinkedList\<T\>
//!    - VecDeque\<T\>
//!    - Vec\<T\>
//!    - EnumSet\<T\> (unstable)
//!  - **Miscellaneous standard library types**:
//!    - Duration
//!    - Path
//!    - PathBuf
//!    - NonZero\<T\> (unstable)
//!  - **Net types**:
//!    - IpAddr
//!    - Ipv4Addr
//!    - Ipv6Addr
//!    - SocketAddr
//!    - SocketAddrV4
//!    - SocketAddrV6
//!
//! [codegen]: https://serde.rs/codegen.html
//! [impl-deserialize]: https://serde.rs/impl-deserialize.html
//! [serde_json]: https://github.com/serde-rs/json
//! [serde_yaml]: https://github.com/dtolnay/serde-yaml
//! [bincode]: https://github.com/TyOverby/bincode
//! [data-formats]: https://serde.rs/#data-formats

#[cfg(feature = "std")]
use std::error;
#[cfg(not(feature = "std"))]
use error;

#[cfg(all(not(feature = "std"), feature = "collections"))]
use collections::{String, Vec};

use core::fmt::{self, Display};
use core::marker::PhantomData;

///////////////////////////////////////////////////////////////////////////////

#[doc(hidden)]
pub mod impls;
pub mod value;
mod from_primitive;

// Helpers used by generated code. Not public API.
#[doc(hidden)]
pub mod private;
#[cfg(any(feature = "std", feature = "collections"))]
mod content;

///////////////////////////////////////////////////////////////////////////////

/// The `Error` trait allows `Deserialize` implementations to create descriptive
/// error messages belonging to the `Deserializer` against which they are
/// currently running.
///
/// Every `Deserializer` declares an `Error` type that encompasses both
/// general-purpose deserialization errors as well as errors specific to the
/// particular deserialization format. For example the `Error` type of
/// `serde_json` can represent errors like an invalid JSON escape sequence or an
/// unterminated string literal, in addition to the error cases that are part of
/// this trait.
///
/// Most deserializers should only need to provide the `Error::custom` method
/// and inherit the default behavior for the other methods.
pub trait Error: Sized + error::Error {
    /// Raised when there is general error when deserializing a type.
    ///
    /// The message should not be capitalized and should not end with a period.
    ///
    /// ```rust
    /// # use serde::de::{Deserialize, Deserializer, Error};
    /// # use std::str::FromStr;
    /// # #[allow(dead_code)]
    /// # struct IpAddr;
    /// # impl FromStr for IpAddr {
    /// #     type Err = String;
    /// #     fn from_str(_: &str) -> Result<Self, String> { unimplemented!() }
    /// # }
    /// impl Deserialize for IpAddr {
    ///     fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    ///         where D: Deserializer
    ///     {
    ///         let s = try!(String::deserialize(deserializer));
    ///         s.parse().map_err(Error::custom)
    ///     }
    /// }
    /// ```
    fn custom<T: Display>(msg: T) -> Self;

    /// Raised when a `Deserialize` receives a type different from what it was
    /// expecting.
    ///
    /// The `unexp` argument provides information about what type was received.
    /// This is the type that was present in the input file or other source data
    /// of the Deserializer.
    ///
    /// The `exp` argument provides information about what type was being
    /// expected. This is the type that is written in the program.
    ///
    /// For example if we try to deserialize a String out of a JSON file
    /// containing an integer, the unexpected type is the integer and the
    /// expected type is the string.
    fn invalid_type(unexp: Unexpected, exp: &Expected) -> Self {
        Error::custom(format_args!("invalid type: {}, expected {}", unexp, exp))
    }

    /// Raised when a `Deserialize` receives a value of the right type but that
    /// is wrong for some other reason.
    ///
    /// The `unexp` argument provides information about what value was received.
    /// This is the value that was present in the input file or other source
    /// data of the Deserializer.
    ///
    /// The `exp` argument provides information about what value was being
    /// expected. This is the type that is written in the program.
    ///
    /// For example if we try to deserialize a String out of some binary data
    /// that is not valid UTF-8, the unexpected value is the bytes and the
    /// expected value is a string.
    fn invalid_value(unexp: Unexpected, exp: &Expected) -> Self {
        Error::custom(format_args!("invalid value: {}, expected {}", unexp, exp))
    }

    /// Raised when deserializing a sequence or map and the input data contains
    /// too many or too few elements.
    ///
    /// The `len` argument is the number of elements encountered. The sequence
    /// or map may have expected more arguments or fewer arguments.
    ///
    /// The `exp` argument provides information about what data was being
    /// expected. For example `exp` might say that a tuple of size 6 was
    /// expected.
    fn invalid_length(len: usize, exp: &Expected) -> Self {
        Error::custom(format_args!("invalid length {}, expected {}", len, exp))
    }

    /// Raised when a `Deserialize` enum type received a variant with an
    /// unrecognized name.
    fn unknown_variant(variant: &str, expected: &'static [&'static str]) -> Self {
        if expected.is_empty() {
            Error::custom(format_args!("unknown variant `{}`, there are no variants",
                                       variant))
        } else {
            Error::custom(format_args!("unknown variant `{}`, expected {}",
                                       variant,
                                       OneOf { names: expected }))
        }
    }

    /// Raised when a `Deserialize` struct type received a field with an
    /// unrecognized name.
    fn unknown_field(field: &str, expected: &'static [&'static str]) -> Self {
        if expected.is_empty() {
            Error::custom(format_args!("unknown field `{}`, there are no fields",
                                       field))
        } else {
            Error::custom(format_args!("unknown field `{}`, expected {}",
                                       field,
                                       OneOf { names: expected }))
        }
    }

    /// Raised when a `Deserialize` struct type expected to receive a required
    /// field with a particular name but that field was not present in the
    /// input.
    fn missing_field(field: &'static str) -> Self {
        Error::custom(format_args!("missing field `{}`", field))
    }

    /// Raised when a `Deserialize` struct type received more than one of the
    /// same field.
    fn duplicate_field(field: &'static str) -> Self {
        Error::custom(format_args!("duplicate field `{}`", field))
    }
}

/// `Unexpected` represents an unexpected invocation of any one of the `Visitor`
/// trait methods.
///
/// This is used as an argument to the `invalid_type`, `invalid_value`, and
/// `invalid_length` methods of the `Error` trait to build error messages.
///
/// ```rust
/// # use serde::de::{Error, Unexpected, Visitor};
/// # use std::fmt;
/// # #[allow(dead_code)]
/// # struct Example;
/// # impl Visitor for Example {
/// # type Value = ();
/// fn visit_bool<E>(self, v: bool) -> Result<Self::Value, E>
///     where E: Error
/// {
///     Err(Error::invalid_type(Unexpected::Bool(v), &self))
/// }
/// # fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
/// #     write!(formatter, "definitely not a boolean")
/// # }
/// # }
/// ```
#[derive(Clone, PartialEq, Debug)]
pub enum Unexpected<'a> {
    /// The input contained a boolean value that was not expected.
    Bool(bool),

    /// The input contained an unsigned integer `u8`, `u16`, `u32` or `u64` that
    /// was not expected.
    Unsigned(u64),

    /// The input contained a signed integer `i8`, `i16`, `i32` or `i64` that
    /// was not expected.
    Signed(i64),

    /// The input contained a floating point `f32` or `f64` that was not
    /// expected.
    Float(f64),

    /// The input contained a `char` that was not expected.
    Char(char),

    /// The input contained a `&str` or `String` that was not expected.
    Str(&'a str),

    /// The input contained a `&[u8]` or `Vec<u8>` that was not expected.
    Bytes(&'a [u8]),

    /// The input contained a unit `()` that was not expected.
    Unit,

    /// The input contained an `Option<T>` that was not expected.
    Option,

    /// The input contained a newtype struct that was not expected.
    NewtypeStruct,

    /// The input contained a sequence that was not expected.
    Seq,

    /// The input contained a map that was not expected.
    Map,

    /// The input contained an enum that was not expected.
    Enum,

    /// The input contained a unit variant that was not expected.
    UnitVariant,

    /// The input contained a newtype variant that was not expected.
    NewtypeVariant,

    /// The input contained a tuple variant that was not expected.
    TupleVariant,

    /// The input contained a struct variant that was not expected.
    StructVariant,

    /// A message stating what uncategorized thing the input contained that was
    /// not expected.
    ///
    /// The message should be a noun or noun phrase, not capitalized and without
    /// a period. An example message is "unoriginal superhero".
    Other(&'a str),
}

impl<'a> fmt::Display for Unexpected<'a> {
    fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        use self::Unexpected::*;
        match *self {
            Bool(b) => write!(formatter, "boolean `{}`", b),
            Unsigned(i) => write!(formatter, "integer `{}`", i),
            Signed(i) => write!(formatter, "integer `{}`", i),
            Float(f) => write!(formatter, "floating point `{}`", f),
            Char(c) => write!(formatter, "character `{}`", c),
            Str(s) => write!(formatter, "string {:?}", s),
            Bytes(_) => write!(formatter, "byte array"),
            Unit => write!(formatter, "unit value"),
            Option => write!(formatter, "Option value"),
            NewtypeStruct => write!(formatter, "newtype struct"),
            Seq => write!(formatter, "sequence"),
            Map => write!(formatter, "map"),
            Enum => write!(formatter, "enum"),
            UnitVariant => write!(formatter, "unit variant"),
            NewtypeVariant => write!(formatter, "newtype variant"),
            TupleVariant => write!(formatter, "tuple variant"),
            StructVariant => write!(formatter, "struct variant"),
            Other(other) => formatter.write_str(other),
        }
    }
}

/// `Expected` represents an explanation of what data a `Visitor` was expecting
/// to receive.
///
/// This is used as an argument to the `invalid_type`, `invalid_value`, and
/// `invalid_length` methods of the `Error` trait to build error messages. The
/// message should be a noun or noun phrase that completes the sentence "This
/// Visitor expects to receive ...", for example the message could be "an
/// integer between 0 and 64". The message should not be capitalized and should
/// not end with a period.
///
/// Within the context of a `Visitor` implementation, the `Visitor` itself
/// (`&self`) is an implementation of this trait.
///
/// ```rust
/// # use serde::de::{Error, Unexpected, Visitor};
/// # use std::fmt;
/// # #[allow(dead_code)]
/// # struct Example;
/// # impl Visitor for Example {
/// # type Value = ();
/// fn visit_bool<E>(self, v: bool) -> Result<Self::Value, E>
///     where E: Error
/// {
///     Err(Error::invalid_type(Unexpected::Bool(v), &self))
/// }
/// # fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
/// #     write!(formatter, "definitely not a boolean")
/// # }
/// # }
/// ```
///
/// Outside of a `Visitor`, `&"..."` can be used.
///
/// ```rust
/// # use serde::de::{Error, Unexpected};
/// # #[allow(dead_code)]
/// # fn example<E: Error>() -> Result<(), E> {
/// # let v = true;
/// return Err(Error::invalid_type(Unexpected::Bool(v), &"a negative integer"));
/// # }
/// ```
pub trait Expected {
    /// Format an explanation of what data was being expected. Same signature as
    /// the `Display` and `Debug` traits.
    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result;
}

impl<T> Expected for T
    where T: Visitor
{
    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
        self.expecting(formatter)
    }
}

impl<'a> Expected for &'a str {
    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
        formatter.write_str(self)
    }
}

impl<'a> Display for Expected + 'a {
    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
        Expected::fmt(self, formatter)
    }
}

///////////////////////////////////////////////////////////////////////////////

/// A **data structure** that can be deserialized from any data format supported
/// by Serde.
///
/// Serde provides `Deserialize` implementations for many Rust primitive and
/// standard library types. The complete list is [here][de]. All of these can
/// be deserialized using Serde out of the box.
///
/// Additionally, Serde provides a procedural macro called `serde_derive` to
/// automatically generate `Deserialize` implementations for structs and enums
/// in your program. See the [codegen section of the manual][codegen] for how to
/// use this.
///
/// In rare cases it may be necessary to implement `Deserialize` manually for
/// some type in your program. See the [Implementing
/// `Deserialize`][impl-deserialize] section of the manual for more about this.
///
/// Third-party crates may provide `Deserialize` implementations for types that
/// they expose. For example the `linked-hash-map` crate provides a
/// `LinkedHashMap<K, V>` type that is deserializable by Serde because the crate
/// provides an implementation of `Deserialize` for it.
///
/// [de]: https://docs.serde.rs/serde/de/index.html
/// [codegen]: https://serde.rs/codegen.html
/// [impl-deserialize]: https://serde.rs/impl-deserialize.html
pub trait Deserialize: Sized {
    /// Deserialize this value from the given Serde deserializer.
    ///
    /// See the [Implementing `Deserialize`][impl-deserialize] section of the
    /// manual for more information about how to implement this method.
    ///
    /// [impl-deserialize]: https://serde.rs/impl-deserialize.html
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: Deserializer;
}

/// `DeserializeSeed` is the stateful form of the `Deserialize` trait. If you
/// ever find yourself looking for a way to pass data into a `Deserialize` impl,
/// this trait is the way to do it.
///
/// As one example of stateful deserialization consider deserializing a JSON
/// array into an existing buffer. Using the `Deserialize` trait we could
/// deserialize a JSON array into a `Vec<T>` but it would be a freshly allocated
/// `Vec<T>`; there is no way for `Deserialize` to reuse a previously allocated
/// buffer. Using `DeserializeSeed` instead makes this possible as in the
/// example code below.
///
/// The canonical API for stateless deserialization looks like this:
///
/// ```rust
/// # use serde::Deserialize;
/// # #[allow(dead_code)]
/// # enum Error {}
/// # #[allow(dead_code)]
/// fn func<T: Deserialize>() -> Result<T, Error>
/// # { unimplemented!() }
/// ```
///
/// Adjusting an API like this to support stateful deserialization is a matter
/// of accepting a seed as input:
///
/// ```rust
/// # use serde::de::DeserializeSeed;
/// # #[allow(dead_code)]
/// # enum Error {}
/// # #[allow(dead_code)]
/// fn func_seed<T: DeserializeSeed>(seed: T) -> Result<T::Value, Error>
/// # {
/// #     let _ = seed;
/// #     unimplemented!()
/// # }
/// ```
///
/// In practice the majority of deserialization is stateless. An API expecting a
/// seed can be appeased by passing `std::marker::PhantomData` as a seed in the
/// case of stateless deserialization.
///
/// # Example
///
/// Suppose we have JSON that looks like `[[1, 2], [3, 4, 5], [6]]` and we need
/// to deserialize it into a flat representation like `vec![1, 2, 3, 4, 5, 6]`.
/// Allocating a brand new `Vec<T>` for each subarray would be slow. Instead we
/// would like to allocate a single `Vec<T>` and then deserialize each subarray
/// into it. This requires stateful deserialization using the `DeserializeSeed`
/// trait.
///
/// ```rust
/// # use serde::de::{Deserialize, DeserializeSeed, Deserializer, Visitor, SeqVisitor};
/// # use std::fmt;
/// # use std::marker::PhantomData;
/// #
/// // A DeserializeSeed implementation that uses stateful deserialization to
/// // append array elements onto the end of an existing vector. The preexisting
/// // state ("seed") in this case is the Vec<T>. The `deserialize` method of
/// // `ExtendVec` will be traversing the inner arrays of the JSON input and
/// // appending each integer into the existing Vec.
/// struct ExtendVec<'a, T: 'a>(&'a mut Vec<T>);
///
/// impl<'a, T> DeserializeSeed for ExtendVec<'a, T>
///     where T: Deserialize
/// {
///     // The return type of the `deserialize` method. This implementation
///     // appends onto an existing vector but does not create any new data
///     // structure, so the return type is ().
///     type Value = ();
///
///     fn deserialize<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
///         where D: Deserializer
///     {
///         // Visitor implementation that will walk an inner array of the JSON
///         // input.
///         struct ExtendVecVisitor<'a, T: 'a>(&'a mut Vec<T>);
///
///         impl<'a, T> Visitor for ExtendVecVisitor<'a, T>
///             where T: Deserialize
///         {
///             type Value = ();
///
///             fn visit_seq<V>(self, mut visitor: V) -> Result<(), V::Error>
///                 where V: SeqVisitor
///             {
///                 // Visit each element in the inner array and push it onto
///                 // the existing vector.
///                 while let Some(elem) = visitor.visit()? {
///                     self.0.push(elem);
///                 }
///                 Ok(())
///             }
/// #
/// #           fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
/// #               write!(formatter, "an array of integers")
/// #           }
///         }
///
///         deserializer.deserialize_seq(ExtendVecVisitor(self.0))
///     }
/// }
///
/// // Visitor implementation that will walk the outer array of the JSON input.
/// struct FlattenedVecVisitor<T>(PhantomData<T>);
///
/// impl<T> Visitor for FlattenedVecVisitor<T>
///     where T: Deserialize
/// {
///     // This Visitor constructs a single Vec<T> to hold the flattened
///     // contents of the inner arrays.
///     type Value = Vec<T>;
///
///     fn visit_seq<V>(self, mut visitor: V) -> Result<Vec<T>, V::Error>
///         where V: SeqVisitor
///     {
///         // Create a single Vec to hold the flattened contents.
///         let mut vec = Vec::new();
///
///         // Each iteration through this loop is one inner array.
///         while let Some(()) = visitor.visit_seed(ExtendVec(&mut vec))? {
///             // Nothing to do; inner array has been appended into `vec`.
///         }
///
///         // Return the finished vec.
///         Ok(vec)
///     }
/// #
/// #   fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
/// #       write!(formatter, "an array of arrays")
/// #   }
/// }
///
/// # #[allow(dead_code)]
/// # fn example<D: Deserializer>(deserializer: D) -> Result<(), D::Error> {
/// let visitor = FlattenedVecVisitor(PhantomData);
/// let flattened: Vec<u64> = deserializer.deserialize_seq(visitor)?;
/// # let _ = flattened;
/// # Ok(()) }
/// ```
pub trait DeserializeSeed: Sized {
    /// The type produced by using this seed.
    type Value;

    /// Equivalent to the more common `Deserialize::deserialize` method, except
    /// with some initial piece of data (the seed) passed in.
    fn deserialize<D>(self, deserializer: D) -> Result<Self::Value, D::Error> where D: Deserializer;
}

impl<T> DeserializeSeed for PhantomData<T>
    where T: Deserialize
{
    type Value = T;

    #[inline]
    fn deserialize<D>(self, deserializer: D) -> Result<T, D::Error>
        where D: Deserializer
    {
        T::deserialize(deserializer)
    }
}

///////////////////////////////////////////////////////////////////////////////

/// A **data format** that can deserialize any data structure supported by
/// Serde.
///
/// The role of this trait is to define the deserialization half of the Serde
/// data model, which is a way to categorize every Rust data type into one of 28
/// possible types. Each method of the `Serializer` trait corresponds to one of
/// the types of the data model.
///
/// Implementations of `Deserialize` map themselves into this data model by
/// passing to the `Deserializer` a `Visitor` implementation that can receive
/// these various types.
///
/// The types that make up the Serde data model are:
///
///  - 12 primitive types:
///    - bool
///    - i8, i16, i32, i64
///    - u8, u16, u32, u64
///    - f32, f64
///    - char
///  - string
///  - byte array - [u8]
///  - option
///    - either none or some value
///  - unit
///    - unit is the type of () in Rust
///  - unit_struct
///    - for example `struct Unit` or `PhantomData<T>`
///  - unit_variant
///    - the `E::A` and `E::B` in `enum E { A, B }`
///  - newtype_struct
///    - for example `struct Millimeters(u8)`
///  - newtype_variant
///    - the `E::N` in `enum E { N(u8) }`
///  - seq
///    - a dynamically sized sequence of values, for example `Vec<T>` or
///      `HashSet<T>`
///  - seq_fixed_size
///    - a statically sized sequence of values for which the size will be known
///      at deserialization time without looking at the serialized data, for
///      example `[u64; 10]`
///  - tuple
///    - for example `(u8,)` or `(String, u64, Vec<T>)`
///  - tuple_struct
///    - for example `struct Rgb(u8, u8, u8)`
///  - tuple_variant
///    - the `E::T` in `enum E { T(u8, u8) }`
///  - map
///    - for example `BTreeMap<K, V>`
///  - struct
///    - a key-value pairing in which the keys will be known at deserialization
///      time without looking at the serialized data, for example `struct S { r:
///      u8, g: u8, b: u8 }`
///  - struct_variant
///    - the `E::S` in `enum E { S { r: u8, g: u8, b: u8 } }`
///
/// The `Deserializer` trait supports two entry point styles which enables
/// different kinds of deserialization.
///
/// 1. The `deserialize` method. Self-describing data formats like JSON are able
///    to look at the serialized data and tell what it represents. For example
///    the JSON deserializer may see an opening curly brace (`{`) and know that
///    it is seeing a map. If the data format supports
///    `Deserializer::deserialize`, it will drive the Visitor using whatever
///    type it sees in the input. JSON uses this approach when deserializing
///    `serde_json::Value` which is an enum that can represent any JSON
///    document. Without knowing what is in a JSON document, we can deserialize
///    it to `serde_json::Value` by going through `Deserializer::deserialize`.
///
/// 2. The various `deserialize_*` methods. Non-self-describing formats like
///    Bincode need to be told what is in the input in order to deserialize it.
///    The `deserialize_*` methods are hints to the deserializer for how to
///    interpret the next piece of input. Non-self-describing formats are not
///    able to deserialize something like `serde_json::Value` which relies on
///    `Deserializer::deserialize`.
///
/// When implementing `Deserialize`, you should avoid relying on
/// `Deserializer::deserialize` unless you need to be told by the Deserializer
/// what type is in the input. Know that relying on `Deserializer::deserialize`
/// means your data type will be able to deserialize from self-describing
/// formats only, ruling out Bincode and many others.
pub trait Deserializer: Sized {
    /// The error type that can be returned if some error occurs during
    /// deserialization.
    type Error: Error;

    /// Require the `Deserializer` to figure out how to drive the visitor based
    /// on what data type is in the input.
    ///
    /// When implementing `Deserialize`, you should avoid relying on
    /// `Deserializer::deserialize` unless you need to be told by the
    /// Deserializer what type is in the input. Know that relying on
    /// `Deserializer::deserialize` means your data type will be able to
    /// deserialize from self-describing formats only, ruling out Bincode and
    /// many others.
    fn deserialize<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor;

    /// Hint that the `Deserialize` type is expecting a `bool` value.
    fn deserialize_bool<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor;

    /// Hint that the `Deserialize` type is expecting a `u8` value.
    fn deserialize_u8<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor;

    /// Hint that the `Deserialize` type is expecting a `u16` value.
    fn deserialize_u16<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor;

    /// Hint that the `Deserialize` type is expecting a `u32` value.
    fn deserialize_u32<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor;

    /// Hint that the `Deserialize` type is expecting a `u64` value.
    fn deserialize_u64<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor;

    /// Hint that the `Deserialize` type is expecting an `i8` value.
    fn deserialize_i8<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor;

    /// Hint that the `Deserialize` type is expecting an `i16` value.
    fn deserialize_i16<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor;

    /// Hint that the `Deserialize` type is expecting an `i32` value.
    fn deserialize_i32<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor;

    /// Hint that the `Deserialize` type is expecting an `i64` value.
    fn deserialize_i64<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor;

    /// Hint that the `Deserialize` type is expecting a `f32` value.
    fn deserialize_f32<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor;

    /// Hint that the `Deserialize` type is expecting a `f64` value.
    fn deserialize_f64<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor;

    /// Hint that the `Deserialize` type is expecting a `char` value.
    fn deserialize_char<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor;

    /// Hint that the `Deserialize` type is expecting a string value and does
    /// not benefit from taking ownership of buffered data owned by the
    /// `Deserializer`.
    ///
    /// If the `Visitor` would benefit from taking ownership of `String` data,
    /// indiciate this to the `Deserializer` by using `deserialize_string`
    /// instead.
    fn deserialize_str<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor;

    /// Hint that the `Deserialize` type is expecting a string value and would
    /// benefit from taking ownership of buffered data owned by the
    /// `Deserializer`.
    ///
    /// If the `Visitor` would not benefit from taking ownership of `String`
    /// data, indicate that to the `Deserializer` by using `deserialize_str`
    /// instead.
    fn deserialize_string<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor;

    /// Hint that the `Deserialize` type is expecting a byte array and does not
    /// benefit from taking ownership of buffered data owned by the
    /// `Deserializer`.
    ///
    /// If the `Visitor` would benefit from taking ownership of `Vec<u8>` data,
    /// indicate this to the `Deserializer` by using `deserialize_byte_buf`
    /// instead.
    fn deserialize_bytes<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor;

    /// Hint that the `Deserialize` type is expecting a byte array and would
    /// benefit from taking ownership of buffered data owned by the
    /// `Deserializer`.
    ///
    /// If the `Visitor` would not benefit from taking ownership of `Vec<u8>`
    /// data, indicate that to the `Deserializer` by using `deserialize_bytes`
    /// instead.
    fn deserialize_byte_buf<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor;

    /// Hint that the `Deserialize` type is expecting an optional value.
    ///
    /// This allows deserializers that encode an optional value as a nullable
    /// value to convert the null value into `None` and a regular value into
    /// `Some(value)`.
    fn deserialize_option<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor;

    /// Hint that the `Deserialize` type is expecting a unit value.
    fn deserialize_unit<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor;

    /// Hint that the `Deserialize` type is expecting a unit struct with a
    /// particular name.
    fn deserialize_unit_struct<V>(self,
                                  name: &'static str,
                                  visitor: V)
                                  -> Result<V::Value, Self::Error>
        where V: Visitor;

    /// Hint that the `Deserialize` type is expecting a newtype struct with a
    /// particular name.
    fn deserialize_newtype_struct<V>(self,
                                     name: &'static str,
                                     visitor: V)
                                     -> Result<V::Value, Self::Error>
        where V: Visitor;

    /// Hint that the `Deserialize` type is expecting a sequence of values.
    fn deserialize_seq<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor;

    /// Hint that the `Deserialize` type is expecting a sequence of values and
    /// knows how many values there are without looking at the serialized data.
    fn deserialize_seq_fixed_size<V>(self,
                                     len: usize,
                                     visitor: V)
                                     -> Result<V::Value, Self::Error>
        where V: Visitor;

    /// Hint that the `Deserialize` type is expecting a tuple value with a
    /// particular number of elements.
    fn deserialize_tuple<V>(self, len: usize, visitor: V) -> Result<V::Value, Self::Error>
        where V: Visitor;

    /// Hint that the `Deserialize` type is expecting a tuple struct with a
    /// particular name and number of fields.
    fn deserialize_tuple_struct<V>(self,
                                   name: &'static str,
                                   len: usize,
                                   visitor: V)
                                   -> Result<V::Value, Self::Error>
        where V: Visitor;

    /// Hint that the `Deserialize` type is expecting a map of key-value pairs.
    fn deserialize_map<V>(self, visitor: V) -> Result<V::Value, Self::Error> where V: Visitor;

    /// Hint that the `Deserialize` type is expecting a struct with a particular
    /// name and fields.
    fn deserialize_struct<V>(self,
                             name: &'static str,
                             fields: &'static [&'static str],
                             visitor: V)
                             -> Result<V::Value, Self::Error>
        where V: Visitor;

    /// Hint that the `Deserialize` type is expecting the name of a struct
    /// field.
    fn deserialize_struct_field<V>(self, visitor: V) -> Result<V::Value, Self::Error>
        where V: Visitor;

    /// Hint that the `Deserialize` type is expecting an enum value with a
    /// particular name and possible variants.
    fn deserialize_enum<V>(self,
                           name: &'static str,
                           variants: &'static [&'static str],
                           visitor: V)
                           -> Result<V::Value, Self::Error>
        where V: Visitor;

    /// Hint that the `Deserialize` type needs to deserialize a value whose type
    /// doesn't matter because it is ignored.
    ///
    /// Deserializers for non-self-describing formats may not support this mode.
    fn deserialize_ignored_any<V>(self, visitor: V) -> Result<V::Value, Self::Error>
        where V: Visitor;
}

///////////////////////////////////////////////////////////////////////////////

/// This trait represents a visitor that walks through a deserializer.
///
/// ```rust
/// # use serde::de::{Error, Unexpected, Visitor};
/// # use std::fmt;
/// /// A visitor that deserializes a long string - a string containing at least
/// /// some minimum number of bytes.
/// # #[allow(dead_code)]
/// struct LongString {
///     min: usize,
/// }
///
/// impl Visitor for LongString {
///     type Value = String;
///
///     fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
///         write!(formatter, "a string containing at least {} bytes", self.min)
///     }
///
///     fn visit_str<E>(self, s: &str) -> Result<Self::Value, E>
///         where E: Error
///     {
///         if s.len() >= self.min {
///             Ok(s.to_owned())
///         } else {
///             Err(Error::invalid_value(Unexpected::Str(s), &self))
///         }
///     }
/// }
/// ```
pub trait Visitor: Sized {
    /// The value produced by this visitor.
    type Value;

    /// Format a message stating what data this Visitor expects to receive.
    ///
    /// This is used in error messages. The message should complete the sentence
    /// "This Visitor expects to receive ...", for example the message could be
    /// "an integer between 0 and 64". The message should not be capitalized and
    /// should not end with a period.
    ///
    /// ```rust
    /// # use std::fmt;
    /// # #[allow(dead_code)]
    /// # struct S { max: usize }
    /// # impl serde::de::Visitor for S {
    /// # type Value = ();
    /// fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
    ///     write!(formatter, "an integer between 0 and {}", self.max)
    /// }
    /// # }
    /// ```
    fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result;

    /// Deserialize a `bool` into a `Value`.
    fn visit_bool<E>(self, v: bool) -> Result<Self::Value, E>
        where E: Error
    {
        Err(Error::invalid_type(Unexpected::Bool(v), &self))
    }

    /// Deserialize an `i8` into a `Value`.
    fn visit_i8<E>(self, v: i8) -> Result<Self::Value, E>
        where E: Error
    {
        self.visit_i64(v as i64)
    }

    /// Deserialize an `i16` into a `Value`.
    fn visit_i16<E>(self, v: i16) -> Result<Self::Value, E>
        where E: Error
    {
        self.visit_i64(v as i64)
    }

    /// Deserialize an `i32` into a `Value`.
    fn visit_i32<E>(self, v: i32) -> Result<Self::Value, E>
        where E: Error
    {
        self.visit_i64(v as i64)
    }

    /// Deserialize an `i64` into a `Value`.
    fn visit_i64<E>(self, v: i64) -> Result<Self::Value, E>
        where E: Error
    {
        Err(Error::invalid_type(Unexpected::Signed(v), &self))
    }

    /// Deserialize a `u8` into a `Value`.
    fn visit_u8<E>(self, v: u8) -> Result<Self::Value, E>
        where E: Error
    {
        self.visit_u64(v as u64)
    }

    /// Deserialize a `u16` into a `Value`.
    fn visit_u16<E>(self, v: u16) -> Result<Self::Value, E>
        where E: Error
    {
        self.visit_u64(v as u64)
    }

    /// Deserialize a `u32` into a `Value`.
    fn visit_u32<E>(self, v: u32) -> Result<Self::Value, E>
        where E: Error
    {
        self.visit_u64(v as u64)
    }

    /// Deserialize a `u64` into a `Value`.
    fn visit_u64<E>(self, v: u64) -> Result<Self::Value, E>
        where E: Error
    {
        Err(Error::invalid_type(Unexpected::Unsigned(v), &self))
    }

    /// Deserialize a `f32` into a `Value`.
    fn visit_f32<E>(self, v: f32) -> Result<Self::Value, E>
        where E: Error
    {
        self.visit_f64(v as f64)
    }

    /// Deserialize a `f64` into a `Value`.
    fn visit_f64<E>(self, v: f64) -> Result<Self::Value, E>
        where E: Error
    {
        Err(Error::invalid_type(Unexpected::Float(v), &self))
    }

    /// Deserialize a `char` into a `Value`.
    #[inline]
    fn visit_char<E>(self, v: char) -> Result<Self::Value, E>
        where E: Error
    {
        self.visit_str(::utils::encode_utf8(v).as_str())
    }

    /// Deserialize a `&str` into a `Value`.
    ///
    /// This method allows the `Deserializer` to avoid a copy by retaining
    /// ownership of any buffered data. `Deserialize` implementations that do
    /// not benefit from taking ownership of `String` data should indicate that
    /// to the deserializer by using `Deserializer::deserialize_str` rather than
    /// `Deserializer::deserialize_string`.
    ///
    /// It is never correct to implement `visit_string` without implementing
    /// `visit_str`. Implement neither, both, or just `visit_str`.
    fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
        where E: Error
    {
        Err(Error::invalid_type(Unexpected::Str(v), &self))
    }

    /// Deserialize a `String` into a `Value`.
    ///
    /// This method allows the `Visitor` to avoid a copy by taking ownership of
    /// a string created by the `Deserializer`. `Deserialize` implementations
    /// that benefit from taking ownership of `String` data should indicate that
    /// to the deserializer by using `Deserializer::deserialize_string` rather
    /// than `Deserializer::deserialize_str`, although not every deserializer
    /// will honor such a request.
    ///
    /// It is never correct to implement `visit_string` without implementing
    /// `visit_str`. Implement neither, both, or just `visit_str`.
    ///
    /// The default implementation forwards to `visit_str` and then drops the
    /// `String`.
    #[inline]
    #[cfg(any(feature = "std", feature = "collections"))]
    fn visit_string<E>(self, v: String) -> Result<Self::Value, E>
        where E: Error
    {
        self.visit_str(&v)
    }

    /// Deserialize a `()` into a `Value`.
    fn visit_unit<E>(self) -> Result<Self::Value, E>
        where E: Error
    {
        Err(Error::invalid_type(Unexpected::Unit, &self))
    }

    /// Deserialize an absent optional `Value`.
    fn visit_none<E>(self) -> Result<Self::Value, E>
        where E: Error
    {
        Err(Error::invalid_type(Unexpected::Option, &self))
    }

    /// Deserialize a present optional `Value`.
    fn visit_some<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
        where D: Deserializer
    {
        let _ = deserializer;
        Err(Error::invalid_type(Unexpected::Option, &self))
    }

    /// Deserialize `Value` as a newtype struct.
    fn visit_newtype_struct<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
        where D: Deserializer
    {
        let _ = deserializer;
        Err(Error::invalid_type(Unexpected::NewtypeStruct, &self))
    }

    /// Deserialize `Value` as a sequence of elements.
    fn visit_seq<V>(self, visitor: V) -> Result<Self::Value, V::Error>
        where V: SeqVisitor
    {
        let _ = visitor;
        Err(Error::invalid_type(Unexpected::Seq, &self))
    }

    /// Deserialize `Value` as a key-value map.
    fn visit_map<V>(self, visitor: V) -> Result<Self::Value, V::Error>
        where V: MapVisitor
    {
        let _ = visitor;
        Err(Error::invalid_type(Unexpected::Map, &self))
    }

    /// Deserialize `Value` as an enum.
    fn visit_enum<V>(self, visitor: V) -> Result<Self::Value, V::Error>
        where V: EnumVisitor
    {
        let _ = visitor;
        Err(Error::invalid_type(Unexpected::Enum, &self))
    }

    /// Deserialize a `&[u8]` into a `Value`.
    ///
    /// This method allows the `Deserializer` to avoid a copy by retaining
    /// ownership of any buffered data. `Deserialize` implementations that do
    /// not benefit from taking ownership of `Vec<u8>` data should indicate that
    /// to the deserializer by using `Deserializer::deserialize_bytes` rather
    /// than `Deserializer::deserialize_byte_buf`.
    ///
    /// It is never correct to implement `visit_byte_buf` without implementing
    /// `visit_bytes`. Implement neither, both, or just `visit_bytes`.
    fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
        where E: Error
    {
        let _ = v;
        Err(Error::invalid_type(Unexpected::Bytes(v), &self))
    }

    /// Deserialize a `Vec<u8>` into a `Value`.
    ///
    /// This method allows the `Visitor` to avoid a copy by taking ownership of
    /// a byte buffer created by the `Deserializer`. `Deserialize`
    /// implementations that benefit from taking ownership of `Vec<u8>` data
    /// should indicate that to the deserializer by using
    /// `Deserializer::deserialize_byte_buf` rather than
    /// `Deserializer::deserialize_bytes`, although not every deserializer will
    /// honor such a request.
    ///
    /// It is never correct to implement `visit_byte_buf` without implementing
    /// `visit_bytes`. Implement neither, both, or just `visit_bytes`.
    ///
    /// The default implementation forwards to `visit_bytes` and then drops the
    /// `Vec<u8>`.
    #[cfg(any(feature = "std", feature = "collections"))]
    fn visit_byte_buf<E>(self, v: Vec<u8>) -> Result<Self::Value, E>
        where E: Error
    {
        self.visit_bytes(&v)
    }
}

///////////////////////////////////////////////////////////////////////////////

/// `SeqVisitor` visits each item in a sequence.
///
/// This is a trait that a `Deserializer` passes to a `Visitor` implementation,
/// which deserializes each item in a sequence.
pub trait SeqVisitor {
    /// The error type that can be returned if some error occurs during
    /// deserialization.
    type Error: Error;

    /// This returns `Ok(Some(value))` for the next value in the sequence, or
    /// `Ok(None)` if there are no more remaining items.
    ///
    /// `Deserialize` implementations should typically use `SeqVisitor::visit`
    /// instead.
    fn visit_seed<T>(&mut self, seed: T) -> Result<Option<T::Value>, Self::Error>
        where T: DeserializeSeed;

    /// This returns `Ok(Some(value))` for the next value in the sequence, or
    /// `Ok(None)` if there are no more remaining items.
    ///
    /// This method exists as a convenience for `Deserialize` implementations.
    /// `SeqVisitor` implementations should not override the default behavior.
    #[inline]
    fn visit<T>(&mut self) -> Result<Option<T>, Self::Error>
        where T: Deserialize
    {
        self.visit_seed(PhantomData)
    }

    /// Return the lower and upper bound of items remaining in the sequence.
    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        (0, None)
    }
}

impl<'a, V> SeqVisitor for &'a mut V
    where V: SeqVisitor
{
    type Error = V::Error;

    #[inline]
    fn visit_seed<T>(&mut self, seed: T) -> Result<Option<T::Value>, V::Error>
        where T: DeserializeSeed
    {
        (**self).visit_seed(seed)
    }

    #[inline]
    fn visit<T>(&mut self) -> Result<Option<T>, V::Error>
        where T: Deserialize
    {
        (**self).visit()
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        (**self).size_hint()
    }
}

///////////////////////////////////////////////////////////////////////////////

/// `MapVisitor` visits each item in a sequence.
///
/// This is a trait that a `Deserializer` passes to a `Visitor` implementation.
pub trait MapVisitor {
    /// The error type that can be returned if some error occurs during
    /// deserialization.
    type Error: Error;

    /// This returns `Ok(Some(key))` for the next key in the map, or `Ok(None)`
    /// if there are no more remaining entries.
    ///
    /// `Deserialize` implementations should typically use
    /// `MapVisitor::visit_key` or `MapVisitor::visit` instead.
    fn visit_key_seed<K>(&mut self, seed: K) -> Result<Option<K::Value>, Self::Error>
        where K: DeserializeSeed;

    /// This returns a `Ok(value)` for the next value in the map.
    ///
    /// `Deserialize` implementations should typically use
    /// `MapVisitor::visit_value` instead.
    fn visit_value_seed<V>(&mut self, seed: V) -> Result<V::Value, Self::Error>
        where V: DeserializeSeed;

    /// This returns `Ok(Some((key, value)))` for the next (key-value) pair in
    /// the map, or `Ok(None)` if there are no more remaining items.
    ///
    /// `MapVisitor` implementations should override the default behavior if a
    /// more efficient implementation is possible.
    ///
    /// `Deserialize` implementations should typically use `MapVisitor::visit`
    /// instead.
    #[inline]
    fn visit_seed<K, V>(&mut self,
                        kseed: K,
                        vseed: V)
                        -> Result<Option<(K::Value, V::Value)>, Self::Error>
        where K: DeserializeSeed,
              V: DeserializeSeed
    {
        match try!(self.visit_key_seed(kseed)) {
            Some(key) => {
                let value = try!(self.visit_value_seed(vseed));
                Ok(Some((key, value)))
            }
            None => Ok(None),
        }
    }

    /// This returns `Ok(Some(key))` for the next key in the map, or `Ok(None)`
    /// if there are no more remaining entries.
    ///
    /// This method exists as a convenience for `Deserialize` implementations.
    /// `MapVisitor` implementations should not override the default behavior.
    #[inline]
    fn visit_key<K>(&mut self) -> Result<Option<K>, Self::Error>
        where K: Deserialize
    {
        self.visit_key_seed(PhantomData)
    }

    /// This returns a `Ok(value)` for the next value in the map.
    ///
    /// This method exists as a convenience for `Deserialize` implementations.
    /// `MapVisitor` implementations should not override the default behavior.
    #[inline]
    fn visit_value<V>(&mut self) -> Result<V, Self::Error>
        where V: Deserialize
    {
        self.visit_value_seed(PhantomData)
    }

    /// This returns `Ok(Some((key, value)))` for the next (key-value) pair in
    /// the map, or `Ok(None)` if there are no more remaining items.
    ///
    /// This method exists as a convenience for `Deserialize` implementations.
    /// `MapVisitor` implementations should not override the default behavior.
    #[inline]
    fn visit<K, V>(&mut self) -> Result<Option<(K, V)>, Self::Error>
        where K: Deserialize,
              V: Deserialize
    {
        self.visit_seed(PhantomData, PhantomData)
    }

    /// Return the lower and upper bound of items remaining in the sequence.
    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        (0, None)
    }
}

impl<'a, V_> MapVisitor for &'a mut V_
    where V_: MapVisitor
{
    type Error = V_::Error;

    #[inline]
    fn visit_key_seed<K>(&mut self, seed: K) -> Result<Option<K::Value>, Self::Error>
        where K: DeserializeSeed
    {
        (**self).visit_key_seed(seed)
    }

    #[inline]
    fn visit_value_seed<V>(&mut self, seed: V) -> Result<V::Value, Self::Error>
        where V: DeserializeSeed
    {
        (**self).visit_value_seed(seed)
    }

    #[inline]
    fn visit_seed<K, V>(&mut self,
                        kseed: K,
                        vseed: V)
                        -> Result<Option<(K::Value, V::Value)>, Self::Error>
        where K: DeserializeSeed,
              V: DeserializeSeed
    {
        (**self).visit_seed(kseed, vseed)
    }

    #[inline]
    fn visit<K, V>(&mut self) -> Result<Option<(K, V)>, V_::Error>
        where K: Deserialize,
              V: Deserialize
    {
        (**self).visit()
    }

    #[inline]
    fn visit_key<K>(&mut self) -> Result<Option<K>, V_::Error>
        where K: Deserialize
    {
        (**self).visit_key()
    }

    #[inline]
    fn visit_value<V>(&mut self) -> Result<V, V_::Error>
        where V: Deserialize
    {
        (**self).visit_value()
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        (**self).size_hint()
    }
}

///////////////////////////////////////////////////////////////////////////////

/// `EnumVisitor` is a visitor that is created by the `Deserializer` and passed
/// to the `Deserialize` in order to identify which variant of an enum to
/// deserialize.
pub trait EnumVisitor: Sized {
    /// The error type that can be returned if some error occurs during
    /// deserialization.
    type Error: Error;
    /// The `Visitor` that will be used to deserialize the content of the enum
    /// variant.
    type Variant: VariantVisitor<Error = Self::Error>;

    /// `visit_variant` is called to identify which variant to deserialize.
    ///
    /// `Deserialize` implementations should typically use
    /// `EnumVisitor::visit_variant` instead.
    fn visit_variant_seed<V>(self, seed: V) -> Result<(V::Value, Self::Variant), Self::Error>
        where V: DeserializeSeed;

    /// `visit_variant` is called to identify which variant to deserialize.
    ///
    /// This method exists as a convenience for `Deserialize` implementations.
    /// `EnumVisitor` implementations should not override the default behavior.
    #[inline]
    fn visit_variant<V>(self) -> Result<(V, Self::Variant), Self::Error>
        where V: Deserialize
    {
        self.visit_variant_seed(PhantomData)
    }
}

/// `VariantVisitor` is a visitor that is created by the `Deserializer` and
/// passed to the `Deserialize` to deserialize the content of a particular enum
/// variant.
pub trait VariantVisitor: Sized {
    /// The error type that can be returned if some error occurs during
    /// deserialization. Must match the error type of our `EnumVisitor`.
    type Error: Error;

    /// Called when deserializing a variant with no values.
    ///
    /// If the data contains a different type of variant, the following
    /// `invalid_type` error should be constructed:
    ///
    /// ```rust,ignore
    /// fn visit_unit(self) -> Result<(), Self::Error> {
    ///     // What the data actually contained; suppose it is a tuple variant.
    ///     let unexp = Unexpected::TupleVariant;
    ///     Err(de::Error::invalid_type(unexp, &"unit variant"))
    /// }
    /// ```
    fn visit_unit(self) -> Result<(), Self::Error>;

    /// Called when deserializing a variant with a single value.
    ///
    /// `Deserialize` implementations should typically use
    /// `VariantVisitor::visit_newtype` instead.
    ///
    /// If the data contains a different type of variant, the following
    /// `invalid_type` error should be constructed:
    ///
    /// ```rust,ignore
    /// fn visit_newtype_seed<T>(self, _seed: T) -> Result<T::Value, Self::Error>
    ///     where T: de::DeserializeSeed
    /// {
    ///     // What the data actually contained; suppose it is a unit variant.
    ///     let unexp = Unexpected::UnitVariant;
    ///     Err(de::Error::invalid_type(unexp, &"newtype variant"))
    /// }
    /// ```
    fn visit_newtype_seed<T>(self, seed: T) -> Result<T::Value, Self::Error>
        where T: DeserializeSeed;

    /// Called when deserializing a variant with a single value.
    ///
    /// This method exists as a convenience for `Deserialize` implementations.
    /// `VariantVisitor` implementations should not override the default
    /// behavior.
    #[inline]
    fn visit_newtype<T>(self) -> Result<T, Self::Error>
        where T: Deserialize
    {
        self.visit_newtype_seed(PhantomData)
    }

    /// Called when deserializing a tuple-like variant.
    ///
    /// The `len` is the number of fields expected in the tuple variant.
    ///
    /// If the data contains a different type of variant, the following
    /// `invalid_type` error should be constructed:
    ///
    /// ```rust,ignore
    /// fn visit_tuple<V>(self,
    ///                   _len: usize,
    ///                   _visitor: V) -> Result<V::Value, Self::Error>
    ///     where V: Visitor
    /// {
    ///     // What the data actually contained; suppose it is a unit variant.
    ///     let unexp = Unexpected::UnitVariant;
    ///     Err(Error::invalid_type(unexp, &"tuple variant"))
    /// }
    /// ```
    fn visit_tuple<V>(self, len: usize, visitor: V) -> Result<V::Value, Self::Error>
        where V: Visitor;

    /// Called when deserializing a struct-like variant.
    ///
    /// The `fields` are the names of the fields of the struct variant.
    ///
    /// If the data contains a different type of variant, the following
    /// `invalid_type` error should be constructed:
    ///
    /// ```rust,ignore
    /// fn visit_struct<V>(self,
    ///                    _fields: &'static [&'static str],
    ///                    _visitor: V) -> Result<V::Value, Self::Error>
    ///     where V: Visitor
    /// {
    ///     // What the data actually contained; suppose it is a unit variant.
    ///     let unexp = Unexpected::UnitVariant;
    ///     Err(Error::invalid_type(unexp, &"struct variant"))
    /// }
    /// ```
    fn visit_struct<V>(self,
                       fields: &'static [&'static str],
                       visitor: V)
                       -> Result<V::Value, Self::Error>
        where V: Visitor;
}

///////////////////////////////////////////////////////////////////////////////

/// Used in error messages.
///
/// - expected `a`
/// - expected `a` or `b`
/// - expected one of `a`, `b`, `c`
///
/// The slice of names must not be empty.
struct OneOf {
    names: &'static [&'static str],
}

impl Display for OneOf {
    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
        match self.names.len() {
            0 => panic!(), // special case elsewhere
            1 => write!(formatter, "`{}`", self.names[0]),
            2 => write!(formatter, "`{}` or `{}`", self.names[0], self.names[1]),
            _ => {
                try!(write!(formatter, "one of "));
                for (i, alt) in self.names.iter().enumerate() {
                    if i > 0 {
                        try!(write!(formatter, ", "));
                    }
                    try!(write!(formatter, "`{}`", alt));
                }
                Ok(())
            }
        }
    }
}